您的位置:主页 > 公司动态 > 公司新闻 > 公司新闻
芯片巨头的「新」战场_国际期货,香港期货
在今年的光纤通讯集会(OFC) 集会上,光电共封(CPO)成为芯片厂商的一大热议话题,博通、Marvell先容了各家的接纳光电共封装手艺的51.2Tbps的交流机芯片,思科也展示了其CPO手艺的实现可行性原理,在光电共封手艺的支持下,一个交流机的新时代正在来临!这对于光电共封手艺来说是一个很大的提高,也足以解释行使光来移动数据的远景确实是灼烁的。
这个赛道也成为了芯片巨头的新战场。
光电共封迎来大的推动力
这一波的光电共封器件很大的推动者是数据中央的公有云供应商,随着AI/ML(人工智能/机械学习)、高分辨率视频流和虚拟现实等更高带宽应用的泛起,网络流量连续增进,数据中央网络遭受的压力也在不停增添,诸如谷歌、Meta、亚马逊、微软或阿里巴巴等,他们每家都部署了数万台交流机,而且正在推动数据速率从100GbE向400GbE和800GbE更高速的数据链路的偏向生长,这将消耗更多的电力来通过铜缆传输数据。
作为交流机的大脑——交流机芯片,在已往多年来主要有两大耐久生长趋势:
一,约莫每两年一次,交流机芯片的带宽会翻一番,这也很好的遵照了摩尔定律。
二,为了支持总交流机芯片带宽的增添,Serdes的速率、数目和功率也在随之增添,SerDes的速率从10 Gbit/sec增添到112 Gbit/sec,芯片周围的SerDes数目从64通道增添到51.2 Tbps一代的512通道。SerDes功率成为系统总功率的很大一部门。
当下交流机之间所接纳的方案多数是可插拔的光学器件,虽然可以很容易地替换或换成更高容量的,但这也意味着在交流机芯片和光学器件接口之间有几英寸的铜,而且由于所需的电气和光学密度、热问题和功耗,当前可插拔光学器件也面临着容量难扩展的制约。于是,业界最先探索提高数据中央效率的新方式,光电共封(CPO)成为一个有利的选择!
光电共封装(Co-Packaged Optics,简称CPO)是一种新型的光电子集成手艺,它将光学器件(如激光器、调制器、光吸收器等)封装在芯片级别上,直接与芯片内的电路相集成,借助光互连以提高通讯系统的性能和功率效率。配合封装光学器件的一项要害创新是将光学器件移动到离 Switch ASIC 裸片足够近的位置,以便移除这个分外的DSP(见下图)。借助CPO,网络交流机系统中的光接口从交流机外壳前端的可插拔模块转变为与交流机芯片组装在统一封装中的光模块。
基于这种封装模式,光电共封(CPO)手艺的优势尽显:
增强性能:CPO可以将光学元件直接嵌入芯片中,使得光学元件与芯片内部电路的距离更近,减小了电信号的延迟和失真,提高了通讯系统的性能。
节约空间:CPO可以大大减小光模块的尺寸,尤其是在高密度数据中央环境下,可以将更多的端口装在相同巨细的机柜中。
降低功耗:CPO可以削减能量转换的步骤,从而降低了功耗。与传统的光模块相比,CPO在相同数据传输速率下可以削减约50%的功耗。
提高可靠性:CPO可以提高光学和电子之间的互联可靠性,并削减外部滋扰。同时,由于CPO是在芯片级别上封装的,以是也能够提高整个系统的可靠性。
降低成本:CPO可以削减芯片与光模块之间的毗邻器数目,从而降低了生产成本。此外,CPO的小尺寸和低功耗也能够降低运营成本。
正由于此,使得越来越多的芯片厂商、光通讯厂商和研究机构都在起劲研究和使用光电共封手艺。
CPO的商业化雏形,在交流机市场中展现
博通
博通(Broadcom)涉足光电领域约莫在1990年,1995年,Broadcom推出了其*款光电收发器,这是该公司进入光电领域的劈头。往后博通举行了一系列收购,1998年收购了光通讯装备制造商Epigram;2000年,Broadcom收购了另一家光通讯装备制造商Luminent;2016年,Broadcom收购了从事光电器件和模块研发的BroadLight。
可以说,通过不停收购,高通进一步增强了其在光电领域的研发能力,博通也开发出了电子、光学和创新封装架构 (SCIP™) 。养兵千日,现在,博通正将其在光电领域的手艺积累应用到交流机产物中。
博通在2023年光纤通讯集会(OFC) 上谈到了其最新的交流机产物——Broadcom Tomahawk StrataXGS 5,它在单个单片芯片中提供 51.2 Tbps 的以太网交流容量。如下图所示,该交流机值得一提的地方是,Tomahawk 5接纳了光电共封装的手艺,它将交流机芯片和100G PAM4接口配合封装在一起,这种新芯片能够削减将信号驱动到交流机前端的可插拔光学器件的需求,大大降低了功耗。相比于Tomahawk 4 Humboldt 25.6T 6.4W的功率,该交流机仅需要5.5W的功率为800Gbps的流量供电。博通称,由于接纳了光电共封(CPO)的光学手艺,该芯片能将光学毗邻所需的功率降低50%以上。
51.2Tbps交流机中有一个新的交流芯片,这是一款5nm工艺的单片芯片,它搭载了六个Arm处置器焦点,交流机上还支持VxLAN单通道以及PTP和SyncE等特征,可提供多达64个800GbE、128个400GbE、256个200GbE或512个100GbE链路。现实上,这些交流芯片是为了100GbE以上速率的交流机而设计的。博通示意,一台新的Tomahawk 5交流机可以有用地取代48台2014年月的Tomahawk 1交流机。
除了交流机芯片之外,博通另有光电共封的收发器产物。它也接纳了博通的硅光子芯片封装 (SCIP™) 手艺。
Marvell
Marvell Teralynx 10交流机是另一款专为800GbE时代设计的51.2T交流机,该交流机由Marvell的Teralynx 10 51.2 Tbps交流芯片和 PAM4 1.6 Tbps 光电平台 Nova组成。Teralynx 品牌来自Marvell-Innovium的收购。
Marvell Teralynx 10芯片跟博通的一样,也是一款可编程5nm单片交流机芯片,具有512个112G SerDes,能知足32 x 1.6T、64 x 800G和128 x 400G普遍的交流机设置。根据Marvell的说法,一个Teralynx 10取代了12个12.8 Tbps一代,而且在一致容量下能削减80%的功耗。
Teralynx 10使用了Teralynx 独占的通用超低延迟开关缓和冲结构,还支持拥塞感知路由和实时流遥测,使网络能够自动调整和自我修复。借助线速可编程性,可以添加新的协媾和功效来知足AI/ML不停转变的需求。Teralynx 10 支持普遍的实时网络遥测,包罗 P4 带内网络遥测 (INT)。这些功效支持展望剖析、更快的问题解决和更高水平的自动化。
(图源:Marvell)
这款新的交流机芯片可以削减AI/ML等漫衍式应用程序在网络上破费的时间,*限度地提高盘算行使率,并知足人工智能和机械学习不停增进的带宽需求。它适用于下一代数据中央网络中的枝叶和主干应用程序,以及 AI/ML 和高性能盘算 (HPC) 结构。Teralynx 10将在第二季度提供样品。
思科
思科也在举行光电共封手艺的探索,其正在和芯片制造商Inphi之间基于CPO的交流机/光学解决方案的互助,为下一代 51.2 Tb/s交流机和800 Gb/s可插拔装备开发团结封装光学器件 (CPO)。
在本次OFC 2023上,思科也演示了CPO手艺实现的可行性详细步骤。思科指出,其Cisco 8111-32EH是一种传统的32端口2x400G 1RU路由器,基于Cisco Silicon One G100 ASIC的2x400G-FR4可插拔光学模块(64x400G FR4)。思科CPO路由器配备了完整的协同封装的基于硅光子学的光学tiles,驱动64x400G FR4,也基于带CPO衬底的思科Silicon One G100 ASIC。思科还发现晰一种在硅光子IC上执行此复用器/解复用器的创新方式。思科预计试验部署与 51.2Tb 交流机周期同时举行,随后在 101.2Tb 交流机周期内更大规模地接纳。
英特尔
在光电共封这一手艺上,英特尔是资深的玩家之一。2015年宣布推出其co-package photonic手艺。为了提供经济高效的互连解决方案,英特尔一直在增添其硅光子学的带宽,并在不停探索使用一体封装的光学器件。
2019年,Intel收购了以太网交流机芯片和数据中央软件领域的新兴领军企业Barefoot Networks,2020年3月,英特尔展示了12.8 Tb/s Barefoot Tofino 2交流机与1.6 Tb/s集成光子引擎配合封装的方案,硅光互连平台接纳1.6 Tbps光子引擎,在Intel硅光平台上设计和制造,可提供4个400GBase-DR4 接口。英特尔示意,使用一体封装的光学器件,可将光学端口置于在统一封装内的交流机周围,从而可降低功耗,并继续保持交流机带宽的扩展能力。英特尔还示意,其51.2 Tb/s解决方案应该可以在2023年底举行商业部署,
CPU和GPU厂商的试炼
信托英特尔云云致力于硅光研究不是仅仅为了能与交流机新芯片共连,未来光学器件若是能否与CPU、GPU或XPU集成在一起也不得而知。
我们看到,英特尔破费了很大的心力,从多种路径举行对光互联手艺的支持。2022年6月30日,英特尔研究院展示了完全集成在硅晶圆上的八波长漫衍式反馈(DFB),激光器阵列,该阵列输出功率平均性到达 /- 0.25分贝(dB),波长距离平均性到达±6.5%,这项最新的光电共封装解决方案使用了麋集波分复用(DWDM)手艺,展现了在增添带宽的同时显著缩小光子芯片尺寸的远景。而且更主要的是,它是在英特尔的商用300 mm夹杂硅光子平台设计和制造的,因此,它为下一代光电共封装和光互连器件的量产提供了一条清晰的路径。
在2022年英特尔On峰会上,英特尔又展示了其正在开发的一项创新:在可插拔式光电共封装(pluggable co-package photonics)解决方案上的突破。英特尔的研究职员设计了一种坚硬的、高良率的、玻璃材质的解决方案,它通过一个可插拔的毗邻器简化了制造历程,降低了成本,为未来新的系统和芯片封装架构开启了全新可能。
英伟达也看中了光互连的潜力,互连的 GPU 将受益于低延迟数据传输和显着削减的信号损失。Nvidia或将在下一代 NVSwitch上实行团结封装光学器件以实现节点间通讯,这些系统应该在互连的NVLink 网络中支持约4,000个GPU。
英伟达正在集各方之力推动这一手艺的实行。据台媒报道,业内新闻人士透露,台积电介入了由Nvidia牵头的研发项目,该项目将其称为 COUPE(紧凑型通用光子引擎)的硅光子 (SiPh) 集成手艺用于图形硬件,以组合多个 AI GPU。
在2023年的OFC会上,Ayar Labs展示了业界*4太比特/秒(Tbps)双向波分复用(WDM)光学解决方案。而NVIDIA 的加速盘算平台正是由WDM光学互连等先进手艺支持,英伟达希望通过光互连为AI提供“下一个百万倍”加速。Nvidia还介入了Ayar Labs去年的C轮融资,那时它筹集1.3亿美元用于开发其带外激光器和硅光子互连。两家公司设计配合加速光学I/O手艺的开发和接纳,以支持 AI 和机械学习 (ML) 应用程序和数据量的爆炸式增进。
光电共封手艺商业化另有诸多挑战
然则,光电共封手艺要获得大规模的商业化还需要解决多个挑战,它必须可靠、可维修、可部署、可显著节能而且具有成本效益。虽然光互连有望让芯片间的带宽到达更高水平,稀奇是在数据中央内部,但制造上的难题使其成本高昂到难以遭受。
挑战一,CPO手艺严重依赖于硅光子学手艺,需要将光学元件小型化以顺应 ASIC 封装(体积比传统 QSFP-DD 或 OSFP 模块小 100 多倍)。我们看到,专有的CPO方案首先泛起在Broadcom、Intel、Marvell和其他一些公司,这些供应商大多已经收购或与创新的硅光子公司互助。他们在这一手艺上的积累和起劲,使得CPO的商业化逐渐成为可能。
另一方面,随着光学和硅芯片的高度集成,新的工程能力和晶圆代工厂将是异常需要的。
在这方面,格芯是一个对照具有前瞻的代工厂。自从退出芯片先进制程的追逐后,格芯一直在探索其他手艺,硅光子正是格芯押注大筹码的一项手艺。2015 年格芯收购了IBM Microelectronics 的一部门,因此也从IBM Research 获得了光子学专业知识和知识产权。2016年,格芯就推出了其*代硅光子平台,并在同年确立了一个自力的硅光子营业。那时带宽的行业尺度是仅为40 GB/s。格芯赌博未来行业将不得晦气用光的气力在全球各地涌现的数据中央内部和之间移动大量数据。事实证实,确实云云,现在数据中央的带宽已来到400 GB/s和800 GB/s的数据速率。
GF Fotonix 是格芯为硅光子芯片打造的一个整体的平台,这也是业界*的硅光子大批量 300mm CMOS制造代工厂。凭证格芯的先容,该平台将光子元件与高性能CMOS逻辑和RF集成在一起,以实现完全集成的单片电气和光学盘算和通讯引擎,同时针对低信号消耗降级举行了优化。此外,格芯单片硅光子平台的光输入和光输出可通过高密度光纤阵列、片上集成激光器和铜金属化实现与其他半导体芯片的 2.5D 和 3D 异构集成。
芯片巨头如Broadcom、思科、Marvell和NVIDIA以及Ayar Labs、Lightmatter、PsiQuantum、Ranovus 和 Xanadu 在内的光子盘算领域的厂商都与格芯有着亲热的交流互助。此外,EDA软件厂商Ansys、Cadence和Synopsys等也正在提供支持基于集成硅光子学的芯片和小芯片的设计工具。
写在最后
总而言之,光电共封的解决方案确实使得新一代的交流机与前几代相比发生了很大的突破,然则如文中所述,CPO要成为主流另有诸多因素要战胜,据Yole剖析师的说法,只管CPO具有手艺优势,但它将很难与可插拔模块竞争,在很长一段时间内,可插拔模块仍将是*。可插拔、OBO和CPO将共存一段时间。
图源:Yole
现在,光学器件可以与以太网交流机芯片配合封装,未来,它能否与CPU、GPU或XPU集成在一起也或许是一个探讨偏向。在摩尔定律动力不足的情形下,光电共封这项手艺正在崭露其潜力,从另一条新蹊径上来知足当下数据量蓬勃生长的处置需求。而且很主要的一个趋势是,主要的芯片巨头们都在排兵布阵,光电共封手艺正在向我们走进。